ACHARYA INSTITUTE OF TECHNOLOGY Bangalore - 560090

Fourth Semester B.E. Degree Examination, Dec.2016/Jan.2017 Field Theory

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- State and explain Coulomb's law in vector form. (05 Marks)
 - Two point charges $Q_1 = -0.3$ nC at [25, -30, -15], and $Q_2 = 0.5$ nC at [-10, 8, 12] present in free space determine E at P(15, 20, 50). (05 Marks)
 - Given $D = 4y^2 \hat{a}_x + 3x^2y \hat{a}_y + 15\hat{a}_z C/m^2$ verify both sides of Divergence theorem and evaluate charge enclosed within region 0 < x, y, z < 2. (10 Marks)
- Find out the work done in moving a charge $\rho = a$ to $\rho = b$ along with radial direction due to infinite line charge.
 - b. Given a potential $V = 3x^2 + 4y^2(V)$, find the energy stored in volume described by $0 \le x \le 1$ m, $0 \le y \le 1$ m and $0 \le z \le 1$ m. (06 Marks)
 - Obtain the boundary condition between conductor and free space. (08 Marks)
- a. State and prove uniqueness theorem.
 b. In spherical co-ordinates V = 0 at r = 0.1 m and V = 100 V at r = 2m. Assuming free space between the concentric spherical shell find $\, E \,$ and $\, D \,$. (06 Marks)
 - c. Use Laplace equation to find the capacitance between two plate of a parallel plate capacitor, separated by distance 'd' and maintained at potential "o" and "V₀" respectively. (06 Marks)
- Find the magnetic field intensity and flux density at the centre, of a circular wire carrying a current 'I' and of radius 'a' by using Biot – Savart's law. (06 Marks)
 - b. In cylindrical co-ordinates a magnetic field is given as $\vec{H} = [4\rho 2\rho^2] \hat{a}_0 A/m \ 0 \le \rho \le 1$
 - i) Find the current density as a function of p within the cylinder
 - ii) Find the total current that passes through the surface z = 0 and $0 \le \rho \le 1$ m in

 \hat{a}_z direction. (06 Marks)

Define vector magnetic potential and prove that $A = \frac{\mu_0}{4\pi} \int\limits_v^{\underline{J}} \cdot dv$. (08 Marks)

- Derive an expression for the force between two differential current elements. 5 (06 Marks)
 - The z = 0 marks the boundary between two magnetic materials. For region 1, (z > 0), $\mu_1 = 4$ μH and region 2, (z < 0), $\mu_2 = 6 \mu H$. The surface current density at the boundary is given as $\vec{K}=12\,\hat{a}_y\,A\,/\,m$, find \vec{H}_2 if $\vec{H}_1=40\,\hat{a}_x+50\,\hat{a}_y+12\,\hat{a}_z\,kA\,/\,m$.
 - Calculate the inductance of a solenoid of 200 turns wound tightly on a cylindrical type of length 60 cm and of diameter 6 cm. Given that the medium is air. Derive the expression used. (08 Marks)

- 6 a. List Maxwell's equations for time varying field in point and integral form. (06 Marks)
 - b. Starting from Ampere's circuital law derive an expression for displacement current density for time varying fields. (06 Marks)
 - c. What is retarded potential? Obtain an expression for retarded potential V and A. (08 Marks)
- 7 a. State and prove Poynting's theorem.

(10 Marks)

- b. With respect to wave propagation in good conductors, describe what is skin effect, derive an expression for the depth of penetration. If $\sigma = 58 \times 10^6$ T/m at frequency 10 MHz determine depth of penetration. (10 Marks)
- 8 a. The plane x=0 is the boundary between two perfect dielectric. For x<0, $\mu_1=\mu_0$, $\epsilon_1=3.6\pi$ pf/m and $\sigma_1=0$; for x>0, $\mu_2=\mu_0$, $\epsilon_2=14.4\pi$ pf/m and $\sigma_2=0$.
 - If $E_i^+ = 60\cos(10^9 t \beta_1 x)V/m$ find:
 - i) Incident magnetic field H_i
 - ii) Reflected electric and magnetic field E_r and H_r
 - iii) Transmitted electric and magnetic field Et and Ht

(10 Marks)

b. What is a standing wave? Derive an expression for standing wave ratio.

(10 Marks)